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Abstract

Motivation: Identification and removal of micro-scale residual tumor tissue during brain tumor surgery are key for
survival in glioma patients. For this goal, High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance
(HRMAS NMR) spectroscopy-based assessment of tumor margins during surgery has been an effective method.
However, the time required for metabolite quantification and the need for human experts such as a pathologist to be
present during surgery are major bottlenecks of this technique. While machine learning techniques that analyze the
NMR spectrum in an untargeted manner (i.e. using the full raw signal) have been shown to effectively automate this
feedback mechanism, high dimensional and noisy structure of the NMR signal limits the attained performance.

Results: In this study, we show that identifying informative regions in the HRMAS NMR spectrum and using them
for tumor margin assessment improves the prediction power. We use the spectra normalized with the ERETIC (elec-
tronic reference to access in vivo concentrations) method which uses an external reference signal to calibrate the
HRMAS NMR spectrum. We train models to predict quantities of metabolites from annotated regions of this spec-
trum. Using these predictions for tumor margin assessment provides performance improvements up to 4.6% the
Area Under the ROC Curve (AUC-ROC) and 2.8% the Area Under the Precision-Recall Curve (AUC-PR). We validate
the importance of various tumor biomarkers and identify a novel region between 7.97 ppm and 8.09 ppm as a new
candidate for a glioma biomarker.

Availability and implementation: The code is released at https://github.com/ciceklab/targeted_brain_tumor_margin_
assessment. The data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.5781769.

Contact: cicek@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gliomas are the most prevalent brain tumor type (Yan et al., 2009).
They are graded between I and IV according to the histological and
clinical criteria established by the World Health Organization
(WHO) (Louis et al., 2016). High-grade gliomas (i.e. Grade III and
IV) are malignant tumors with poor prognosis and patient survival
rate (Sim et al., 2018) as opposed to low-grade gliomas (Lote et al.,
1997). Unfortunately, even low-grade gliomas have the potential to
progress (Claus et al., 2015). Hence, the surgical management of the

tumor is important for the survival of the patient regardless of its
grade and pathology.

Even though gross total resection of the tumor attenuates recur-
rence risk drastically, residual tumor tissue left on the excision cav-
ity constitutes a risk for patient survival. Spectroscopy-based
intraoperative feedback mechanisms have been useful in detecting
bounds of tumor infiltration which can guide the surgical decision
process. Many techniques based on mass spectrometry (Brown
et al., 2012; Calligaris et al., 2015a,b; Fatou et al., 2016; Jarmusch
et al., 2016; Pirro et al., 2017; Santagata et al., 2014; Schafer et al.,

VC The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3238

Bioinformatics, 38(12), 2022, 3238–3244

https://doi.org/10.1093/bioinformatics/btac309

Advance Access Publication Date: 5 May 2022

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/12/3238/6581075 by BILKEN
T user on 25 July 2022

https://orcid.org/0000-0001-8613-6619
https://github.com/ciceklab/targeted_brain_tumor_margin_assessment
https://github.com/ciceklab/targeted_brain_tumor_margin_assessment
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac309#supplementary-data
https://academic.oup.com/


2011) and optical spectrometry (Chan et al., 2018; Colditz and
Jeffree, 2012; Hollon et al., 2018; Jermyn et al., 2016, 2017; Li
et al., 2014; Lu et al., 2016; Poulon et al., 2017; Stummer et al.,
2006; Tsugu et al., 2011; Xue et al., 2018) have been proposed for
this goal. A relatively recent technique, High-Resolution Magic
Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spec-
troscopy is a good-fit for use in tumor surgeries because of its ability
to analyze small, intact and unprocessed tissue samples in minutes
while allowing other analyses to be conducted on the same tissue
sample (Gogiashvili et al., 2019). The machine outputs a free induc-
tion decay (FID) signal whose frequency domain representation can
be analyzed by a technician and a pathologist in �20 min to pin-
point the presence of a few biomarker metabolites. This pipeline fits
into the time frame of a surgery (Battini et al., 2017).

This feedback mechanism is not bulletproof and can be hindered
by problems such as overlapping metabolite peaks in the spectrum
which can prevent the expert to decide whether the biomarker is
present (Karakaslar et al., 2020). Only peaks for a few metabolites
can be checked and quantification of these metabolites is often not
possible due to the strict time constraint. Moreover, the system is
constrained by the availability and the proficiency of human experts
during surgery. A Random Forest (RF)-based approach was pro-
posed to automate this process and pinpoint residual tumor tissue
using the raw NMR signal as input (Cakmakci et al., 2020). This is
an untargeted approach that inputs and analyzes the full raw NMR
spectrum. The model was trained on the largest glioma HRMAS
NMR dataset available to date which contains close to six hundred
samples and achieved over 85% AUC-ROC on distinguishing tumor
and healthy samples (i.e. downstream task). Despite the high per-
formance attained by the well-motivated use of the untargeted
metabolomics, the study is limited by the inherent noise and high
dimensionality of the raw spectrum (over 16k) and the size of the
dataset. These limitations prohibit fitting more complex end-to-end
models with these dataset sizes (Cakmakci et al., 2020).

In this study, we hypothesized that techniques that can denoise
the signal and mimic the targeted approach of an expert technician
can boost the performance of the system. In order to test this
hypothesis, first, we manually quantify 37 metabolites in the above-
mentioned dataset which includes spectra obtained using Carr–
Purcell–Meiboom–Gill (CPMG) pulse sequence Cakmakci et al.
(2020). HRMAS NMR signatures for these metabolites are obtained
from Ruhland et al. (2019). Training an RF-based model using
manually quantified metabolite concentrations as features has in-
deed provided an AUC-ROC improvement of 3.8% over the state-
of-the-art tumor detection approach which uses the raw spectrum

Cakmakci et al. (2020). Unfortunately, quantification of this many
metabolites is a time-consuming task and does not fit into the sur-
gery time-frame. To overcome this issue, we perform HRMAS
NMR metabolite concentration prediction using neural networks by
training on actual labeled glioma data (see Fig. 1). Our results show
that models have a median of mean absolute percentage errors
(MAPEs) ranging from 0.15 to 1.38. Using the predicted metabolite
levels for tumor margin assessment provides 4.6% AUC-ROC and
2.8% AUC-PR improvements (median AUC-ROC 88.7%) and can
easily fit in the time frame of the surgery as inference only takes
seconds.

In addition, we introduce an external, artificial signal into the
CPMG spectrum as a scaling agent using ERETIC (electronic refer-
ence to access in vivo concentrations) method (Akoka et al., 1999).
We use and release a new dataset of half a thousand ERETIC-
CPMG spectra samples of glioma and control patients (107 of them
are new samples) along with quantified metabolite concentrations.
Tumor margin assessment with predicted quantities of metabolites
we obtain from ERETIC-CPMG spectra has even a better perform-
ance (median AUC-ROC 90.2%). We also show that we obtain a
similar performance in distinguishing malignant and benign tumors.

Finally, a close investigation of the raw CPMG spectrum via fea-
ture importance analysis reveals a very short and novel region be-
tween 7.97 ppm and 8.09 ppm which very effectively distinguishes
tumor and healthy tissues. While this region has neither been associ-
ated with any known metabolite nor used for distinguishing tumor
and healthy tissues, using only this region for targeted analyses
results in a median AUC-ROC of 88.5%. Our initial analysis using a
TOCSY spectrum indicates that the region is associated with the N–
H group of N-Acetylaspartate but further research is required to es-
tablish it as a novel biomarker that can be used for targeted analysis.

2 Materials and methods

2.1 Dataset
Two sample sets were generated from the acquired spectra: (i) CPMG
sample set consists of 393 samples which contains 76 control samples,
152 tumor samples (115 aggressive and 37 benign) and 165 samples
from the excision cavity (3 aggressive and 1 benign tumors along with
161 control samples); and (ii) ERETIC-CPMG sample set consists of
500 samples which contain 87 control samples, 258 tumor samples
(208 aggressive and 50 benign) and 155 samples from the excision cav-
ity (3 aggressive and 1 benign tumors along with 151 control samples).
Please see Supplementary Figure S1 for details on sample counts and

Fig. 1. Proposed pipeline for a feedback mechanism based on predicted metabolite levels during surgery. The surgeon first removes the tumor and then extracts tissue samples

from the excision cavity. Samples are analyzed via HRMAS NMR spectroscopy. The resulting spectra are processed by a set of neural networks for metabolite quantification,

as opposed to a manual approach which requires a technician to be present and does not fit into the time frame of surgery. Excision cavity samples are labeled as tumor or

healthy via a random forest classifier built on the predicted metabolite levels. Guidance on tumor margins is then provided to the surgeon by the predicted labels. The surgeon

continues to resect tissue from tumor labeled regions
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Supplementary Figure S2 for the age distribution of the samples. Note
that the CPMG sample set is a subset of the data released at https://zen
odo.org/record/3951448 (n¼568) which contains only 393 samples
with quantified metabolite concentrations. For more information
regarding the dataset including patient’s cohort, tissue sample collec-
tion, ethics statement, HRMAS NMR spectrum acquisition and nor-
malization and HRMAS NMR Spectrum Preprocessing, please see
Sections S1.1, S1.2, S1.3 and S1.7 of the Supplementary Text, respect-
ively. Please see Supplementary Figure S12 in which we took one con-
trol and one tumor sample randomly from the dataset and showed the
raw ERETIC spectrum on the frequency domain.

2.2 Metabolite quantification
2.2.1 Metabolite quantification and challenges

Manual metabolite profiling is a time-consuming process. The pro-
cedure for metabolite profiling requires a separate analysis per
spectrum due to changes in the chemical shift of spectrum peaks
according to the micro-environment in tissue or cells, particularly
its pH (van der Graaf and Heerschap, 1996). A given target metab-
olite can be profiled from a spectrum in a single execution of the
procedure with the assistance of an NMR technician. Moreover, a
database of metabolite signatures, to be aligned with the target
peaks of the spectrum, must be accessible during the procedure.
Frequently, the profile of a single metabolite is not sufficient for a
robust analysis. Hence, conducting separate analyses per metabol-
ite is a requirement that increases the complexity of the task dras-
tically. Consequently, application of this procedure during surgery
is not feasible and one needs to opt for automated approaches for
metabolite quantification.

We consider 37 metabolites for our analyses in this work. A
complete list of these metabolites along with the quantification pro-
cedure used to measure concentrations of them is provided in
Section S1.4 of the Supplementary Text. These are a subset of the
metabolite signatures provided by Ruhland et al. (2019). The reason
for using these 37 metabolites is that for every sample in our dataset
all of these metabolites are quantified by an expert and these are
deemed important to assess tumor metabolism. Other metabolites
can be added to this list if their measurements are available and they
are important for the classification task of interest (e.g. for other dis-
eases or cancer types). Metabolite concentrations measured with
this procedure were used as ground truth for the automated metab-
olite quantification methods.

2.2.2 Background on automated techniques for metabolite

quantification

A few related methods were recently proposed on automated metab-
olite quantification problems in the literature. First is the application
of RF regression on the raw spectrum which estimates concentra-
tions of N-acetyl-L-aspartic-acid (NAA), Creatine, Choline and
myo-Inositol metabolites (Das et al., 2017). Two other works use
convolutional neural networks (CNNs) for the same purpose
(Hatami et al., 2018; Lee and Kim, 2019). However, their settings
and datasets are different from ours. First of all, they all work on
brain imaging data (Magnetic Resonance Spectroscopy Imaging) ra-
ther than HRMAS NMR technology. Second, all methods heavily
depend on simulated data for training where data sizes range from
tens of thousands to millions. Only Das et al. used 287 samples for
training purposes along with the simulated data, and Lee et al. use
40 samples obtained from five individuals for testing. As also Lee
et al. indicate that the simulation procedure has limitations. For in-
stance, in their setting, they leave out several factors such as spectro-
scopic artifacts like residual water signal, and first-order phase
distortion which has the potential to affect the accuracy of the meth-
ods. Finally, the number of metabolites quantified is smaller, rang-
ing from 5 to 20.

2.2.3 Problem formulation

We represent each HRMAS NMR spectrum i in the dataset with
two variables: a feature vector, XðiÞ, and target metabolite

concentrations, MðiÞ. The feature vector is a k-dimensional vector:
XðiÞ ¼ ½XðiÞ1 ;X

ðiÞ
2 ; . . . ;X

ðiÞ
k � 2 R

k corresponding to either whole or
parts of the full spectrum or frequency-binned spectrum. Target me-
tabolite profiles are represented by a d-dimensional vector: MðiÞ ¼
½MðiÞ1 ;M

ðiÞ
2 ; . . . ;M

ðiÞ
d � corresponding to the ground truth concentra-

tions of d metabolites measured from the HRMAS NMR spectrum
with the manual metabolite quantification procedure. We formulate
the metabolite quantification problem, using the above-mentioned
variables, as a set of regression problems such that each regression
problem is tackled in an: (i) independent, or (ii) dependent manner.
Regardless of the formulation, our goal is to approximate a function
f such that f ðXðiÞÞ ¼MðiÞ. For (i), we learn d models for d
metabolites where each model approximates a function
fjðXðiÞÞ ¼M

ðiÞ
j ; j 2 f1; 2; . . . ; dg. On the other hand, for (ii), we learn

a single quantifier model for all metabolites by approximating the
function f.

2.2.4 Learning to quantify metabolites from the HRMAS NMR

spectrum

Here, we provide the details of the automated metabolite quantifica-
tion methodology as well as the input modalities used for their de-
velopment. Note that our approaches are formulated based on the
feature vector X with k dimensions and target metabolite concentra-
tions M with d dimensions, as described in Section 2.2.3. In particu-
lar, we consider the multivariate multiple elastic net regression
trained on the full spectrum as well as fully-connected two-layer per-
ceptrons trained on (i) metabolite peak regions (i.e. target metabolite
signatures); and on (ii) frequency-binned spectrum for learning tar-
get metabolite concentrations in an independent manner, as formu-
lated in Section 2.2.3. We pick Elastic-net as our baseline as it is a
commonly used method that applies regularization to avoid overfit-
ting. Note that in our problem the number of features is larger than
the number of training samples.

The multivariate multiple regression is concerned with finding
the linear relationship between multiple response variables and pre-
dictor variables. Karakaslar et al. (2020) used the multivariate mul-
tiple regression approach to predict one-dimensional 13C HRMAS
NMR signal intensity using also one-dimensional 1H HRMAS
NMR spectrum elements as the predictor variables. We have experi-
mented with a multivariate multiple linear regression model without
regularization. However, the model was omitted due to poor gener-
alization to unseen samples. Eventually, we used a multivariate mul-
tiple elastic-net regression which is a regularized version of the
former using a convex combination of L1 and L2 priors. Predictor
variables for the model (i.e. feature vector X) consist of the full spec-
trum (i.e. XðiÞ, k¼16, 314), as defined in Section S1.7 of
Supplementary Text, with an extra (1) padded to the beginning (i.e.
X0ðiÞ, k¼16, 315) for sample i. Response variables of the model are
target metabolite concentrations (i.e. MðiÞ, d¼37). The Elastic-net
objective function we use is obtained from Friedman et al. (2010)
and is defined as follows:

min
W

1

2N
kX0 1:Nð ÞW �M 1:Nð Þk2

2 þ aqkWk1 þ
að1� qÞ

2
kWk2

2 (1)

where N is the dataset size, W is the learnable weights of the model,
q is defined as the constant weighting parameter for the convex
combination of L1 and L2 priors and a controls the strength of
penalization.

Target peak regions, for fully-connected two-layer perceptron
models, were selected based on metabolite signatures recorded on
this database (Ruhland et al., 2019). We extract these regions from
both the frequency-binned spectrum (i.e. k¼1, 401) and the full
spectrum (i.e. k¼16, 314) by masking relevant ppms. Metabolite
signatures used for each metabolite are provided in Supplementary
Table S3. We train quantifier models using peak regions from each
source separately. That is, d models were trained for each
metabolite-specific feature type. Each of the trained models approxi-
mates the function fj, defined in Section 2.2.3, and can be summar-
ized using a dataset of size N as follows:
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~X
1:Nð Þ
¼Maskj X0 1:Nð Þ; Sj

� �
(2)

X 1:Nð Þ
encoding ¼ ReLU FC 192ð Þ

j
~X

1:Nð Þ
� �� �

(3)

M̂
1:Nð Þ

j ¼ ReLU FC 1ð Þ
j X 1:Nð Þ

encoding

� �� �
(4)

where FC
ð�Þ
j represents a fully-connected layer with (�) neurons used

only for model j, ReLU stands for the rectified linear unit, Sj repre-
sents the signature (peak regions in the HRMAS NMR spectrum) of
metabolite j and Maskj stands for a function to remove elements
that do not belong to Sj and concatenate the remaining features.
Predicted metabolite concentrations are then a combination of all
model outputs:

M̂
1:Nð Þ
¼ M̂

1:Nð Þ
1 ; M̂

1:Nð Þ
2 ; . . . ; M̂

1:Nð Þ
d

h i
(5)

2.3 Pathological classification
Samples in the dataset are characterized as either healthy (i.e. con-
trol group) or tumor (i.e. glioma) tissue. Tumor samples are further
characterized as malignant or benign with respect to the labeling of
a pathologist. The methods to be proposed in this section are per-
formed for distinguishing: (i) tumor samples from healthy samples;
(ii) malignant tumor samples from benign tumor samples. We de-
note the former as the main task due to its importance for brain
tumor margin assessment and the latter as the subsidiary task to pro-
vide optional and extensive feedback to the surgeon.

2.3.1 Problem formulation

Both tasks are modeled as binary classification problems. Let the
class labels for the main and subsidiary tasks, and the feature vector
for sample i from the dataset D be Y

ðiÞ
m ; Y

ðiÞ
s and XðiÞ respectively.

The feature vector XðiÞ is a k-dimensional vector
½XðiÞ1 ;X

ðiÞ
2 ;X

ðiÞ
3 ; . . . ;X

ðiÞ
k � 2 R

k where X
ðiÞ
j correspond to: (i) measured

or predicted biomarker metabolite levels (i.e. Mi
j or M̂

i

j) (see Section
2.3.4); or (ii) HRMAS NMR spectrum intensity for both tasks (see
Sections 2.3.2 and 2.3.3).

The class label for the main task, Y
ðiÞ
m , is set to 1 if the sample i

originated from a glioma tissue and 0 otherwise. Then, given a data-
set of size N, the model we learn for the main task approximates a
function f such that f ðXð1:NÞÞ ¼ Y

ð1:NÞ
m . Similarly, the class label for

the subsidiary task, Y
ðiÞ
s , is set to 1 if the sample i originated from a

malignant glioma and 0 otherwise. Then, the model we learn for the
subsidiary task is a function g such that gðXð1:NÞÞ ¼ Y

ð1:NÞ
s for a

dataset of size N.

2.3.2 Using the raw spectrum as features

In this section, we describe the baseline methods for learning to distin-
guish pathological labels. Recently, an RF-based method had been
shown to detect brain tumor margins more accurately compared to
CNNs, fully-connected neural networks, Support Vector Machine
(SVM) and Partial Least Squares-Discriminant Analysis (PLSDA) meth-
ods (Cakmakci et al., 2020). For this reason and also for fair compari-
son purposes, we also adopt an RF-based method which is run using
different input modalities. We consider both an untargeted approach
that works on the raw spectrum and several targeted approaches which
use carefully selected regions on the spectrum. First, we consider two
untargeted RF-based models for both main and subsidiary tasks: learn-
ing from the cropped spectrum (i.e. k¼8, 172, only regions with vari-
ance) and learning from the full spectrum (i.e. k¼16, 314). Note that
the former (cropped spectrum) corresponds to the state-of-the-art
method proposed by Cakmakci et al. (2020). The CPMG spectrum
preprocessing routine for the main and subsidiary tasks contains all
steps described in Section S1.7 of Supplementary Text with the excep-
tion of the spectrum binning step. For the case of ERETIC-CPMG
spectrum, a similar preprocessing was applied with the exception of
constant factor normalization. Instead of normalizing with a constant

factor, each spectrum was normalized with respect to the inherent
ERETIC signal located at 10 ppm. For the full spectrum method, we
measure feature importance on a left out validation dataset for both
main and subsidiary tasks using SHapley Additive exPlanations
(SHAP) values (Lundberg et al., 2020). We then construct a targeted
RF model on the most important t 2 f5; 10;20;100;200;500g spec-
trum features calculated on a left out validation set. In this case, feature
vector Xð1:NÞ ðk ¼ tÞ becomes a discontinuous vector of concatenated t
most important features.

2.3.3 Using the uncharacterized region as features

The feature importance analysis (see Section S2 of Supplementary
Text) yielded an ignored continuous region from the spectra be-
tween 7.97 and 8.09 ppm (i.e. a continuous region of length 142
from the raw spectrum). We train a separate RF model using only
this continuous region from the raw spectrum (i.e. k¼142).

2.3.4 Using the metabolite quantities as features

We utilize again an RF-based approach on both the main and sub-
sidiary tasks. We train the models using: (i) ground truth metabolite
profiles; and (ii) predicted metabolite profiles. The feature vector for
the former is a vector of manually quantified biomarker metabolite
levels (i.e. XðiÞ ¼MðiÞ). The feature vector for the latter is a vector of
metabolite levels predicted by the network per metabolite approach
(see Section 2.2.4). Additionally, we conduct feature importance
analysis on a validation set using either ground truth metabolite lev-
els or predicted metabolite levels. For each feature type, we also con-
struct targeted, RF-based models on the most important
t 2 f1; 3;5;10;20;30g metabolites to investigate the performance
gain.

3 Results

3.1 Experimental setup
In this section, we provide the experimental setup for methods pre-
sented in Sections 2.2.4 and 2.3. First, we relabeled tissue samples
according to their pathological assessment using the procedure
described in Section S1.5 of Supplementary Text. After arranging
main and subsidiary task labels, we create two datasets from CPMG
and ERETIC-CPMG samples, respectively. Implementation details
can be seen in Section S1.6 of Supplementary Text.

3.1.1 Automated metabolite quantification

Regardless of the task and dataset, we adopt a 5-fold cross-valid-
ation scheme (repeated three times) for evaluating our methods.
Each fold is stratified with respect to the pathological class labels
(i.e. control, aggressive and benign). There was not any patient and
sample overlap between folds. In each repetition of the framework,
we first shuffle the dataset, generate the data folds and perform me-
tabolite quantification analyses. Then, samples contained in each
metabolite quantification fold are mapped to main and subsidiary
task folds.

During iteration i of the setup, neural network models were
tested on fold i, validated on fold ðiþ 1Þmod 5 and trained on the
remaining folds; whereas the multivariate multiple elastic-net regres-
sion model was tested on fold i and trained on the remaining folds.

MAPE was calculated on each test fold using measured metabol-
ite concentrations as the ground truth. During cross-validation of
automated metabolite quantification methods, we record the pre-
dicted concentrations for each test fold. We shuffle the dataset and
repeat the cross-validation setup three times for a robust comparison
of the methods.

The multivariate multiple regression model was trained using the
default values of parameters (a¼1, q ¼ 0:5), which led 2-fold
weight for L1 and 1-fold weight for L2 losses (after a grid search on
a ¼ f0:01; 0:1; 1g and q ¼ f0:1;0:2; . . . ; 0:9gÞ. We experimented
with the mean absolute error, mean squared error (MSE), logcosh
and huber as loss functions; and on the learning rates between 10�2

and 10�4 for neural network models. We proceeded with the MSE

Targeted tumor margin assessment 3241

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/12/3238/6581075 by BILKEN
T user on 25 July 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac309#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac309#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac309#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac309#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac309#supplementary-data


loss and learning rate of 10�2:1 due to the highest overall observed
performance. For all models, Adam optimizer (Kingma and Ba,
2014) with a batch size of 64 (selected among 32, 64 and 128) and
weight decay of 10�5 (selected among 10�4; 10�5 and 10�6) were
used during training. The maximum epoch limit was 2000 (selected
among 1000, 2000 and 3000) and early stopping based on valid-
ation loss monitoring was applied on a moving window of 100
(selected among 75, 100 and 125) epochs. We also employ a learn-
ing rate reduction on plateau by a factor of 0.2 (selected among 0.1,
0.2 and 0.3) with 50 (selected among 25, 50 and 100) epoch pa-
tience period, 25 (selected among 15, 25 and 35) epoch cool-down
period with a minimum learning rate of 10�4 (selected among
10�3; 10�4 and 10�5). We suggest using cross-validation to select
these parameters for other applications.

3.1.2 Tumor margin assessment

The 5-fold cross-validation setup used for the metabolite quantifica-
tion task was also used for main and subsidiary pathology classifica-
tion tasks. Folds were mapped from the metabolite quantification
task and matched with main and subsidiary task labels. During iter-
ation i of the setup, each pathological classification method was
tested on fold i, validated on fold ðiþ 1Þmod 5 and trained on the
remaining folds. The overall setup was repeated three times.

The training scheme involved a grid search-based hyper-parameter
selection on the validation set. Grid search routine was performed on
the following hyperparameter space: (i) number of estimators: 50,
150, 300, and 400; (ii) maximum tree depth: 10, 15, 25 and 30; (iii)
minimum number of samples required to split an internal node: 5, 10
and 15; (iv) criterion to measure the quality of a split: gini-index and
entropy; and (v) the number of samples required to be at a leaf node:
2, 10 and 20. Models were selected based on the AUC-ROC metric
calculated on the validation set. As the result of the grid search on our
5-fold cross-validation setup, the following parameters are picked as
the best performing hyper-parameter setting for control and tumor
classification: Number of estimators¼50, maximum tree depth¼10,
minimum number of samples to split a node¼5, minimum number of
samples in a leaf node¼20 and the impurity measure ¼ Gini index.
For benign and aggressive classification, the following parameters are
picked as the best performing hyper-parameter setting: Number of
estimators¼300, maximum tree depth¼15, minimum number of
samples to split a node¼5, minimum number of samples in a leaf
node¼2 and the impurity measure ¼ Gini index. Finally, a model
with the decided parameter setting was trained on the full training set
and released.

The performance of the models was measured in terms of AUC-
ROC and AUC-PR calculated on the test fold. The training and test
folds are synced between two tasks. That is, for the samples that are
in the test fold for the latter task, we use the metabolite concentra-
tion predictions obtained when they are on the test set for the former
task. Please see Section S3.1 of Supplementary Text for the experi-
mental setup used for feature importance based models.

3.2 Metabolite quantification
We compare the performances of baseline methods and the pro-
posed neural network architecture (Section 2.2.4) using the MAPE
metric. Please see Supplementary Table S3 for a tabular representa-
tion of the results. The proposed method (i.e. neural network per
metabolite) achieves the lowest median MAPE for 32 and 33 out of
37 metabolites on CPMG and ERETIC-CPMG sample sets, respect-
ively. Please see in Supplementary Figure S11 that the convergence
of the training and validation losses for 37 metabolites were shown.
We provide the performance comparison of metabolite networks for
the proposed approach on the CPMG sample set in Figure 2. The
lowest and highest median MAPE achieved were 0.15 and 1.38, re-
spectively. We observe that model could not quantify 2-hydroxyglu-
tarate and acetate as well as other metabolites. On the other hand,
creatine, glutamate, glutamine and lactate were the most successful-
ly quantified metabolites in the cohort. Please see Supplementary
Figure S3 for the results of the same analysis on ERETIC-CPMG
sample set. Overall, we observe that results obtained on each sample

set are on par in terms of median MAPE. While our results are not
directly comparable with the methods in the literature due to differ-
ences in the selection of the performance metrics, the number of
metabolites, training setups, and their use of simulated data; we
checked the performance of the latest work in Lee and Kim (2019)
obtained on simulated spectra and observed that our method per-
formed better in terms of MAPE for alanine and lactate (improve-
ment up to �0:4 and �0:24, respectively); worse for some
metabolites including glutathione and glutamate (decline up to
�0:26 and �0:05, respectively). Note that while we would like to
perform well on the quantification, it is not the ultimate goal of this
study. The ultimate goal is to perform well on the pathology classifi-
cation tasks using the models trained with these predictions.

3.3 Pathologic classification
We compare the performance of the above-mentioned methods on
main and subsidiary pathology classification tasks with respect to
AUC-ROC and AUC-PR metrics.

The performance of RF models trained for the main pathology
classification task using various feature types obtained from CPMG
dataset is given in Figure 3. We observe that the model that uses
ground truth metabolite concentrations performed the best on the
main task with a median AUC-ROC of 89.4% and AUC-PR of
94.7%. Moreover, the second best model in terms of AUC-ROC is
the one built on predicted metabolite concentrations. In this case,
the model achieved a median AUC-ROC of 88.7% and AUC-PR of
93.6%. The uncharacterized region also performs similarly. We fur-
ther observe that the performance gap between the models trained
on ground truth and predicted metabolite concentrations are small

Fig. 2. MAPE of the metabolite concentrations predicted by the proposed method

(see Section 2.2.4) on the CPMG sample set. Box plots represent the performance of

models obtained on the test folds, in a 5-fold cross-validation setup, which is

repeated three times

Fig. 3. Performance comparison of models on the task of distinguishing tumor sam-

ples from control samples (main task), with respect to AUC-ROC and AUC-PR met-

rics. Results obtained on CPMG sample set is provided. Please see Supplementary

Figure 13 where results obtained on ERETIC-CPMG sample set are provided. Box

plots represent the performance obtained on test fold, in a 5-fold cross validation

setup, which is repeated 3 times.
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(median difference up to 0.7% AUC-ROC and 1.1% AUC-PR).
This result shows that predicted metabolite levels provided by the
automated metabolite quantification models can be used to distin-
guish control and tumor samples with high performance.

We observe that distinguishing benign tumor and control sam-
ples is more difficult than distinguishing aggressive tumor and con-
trol samples. We used the model we trained to classify tumor and
healthy samples. Then, we removed all the aggressive tumor samples
from the test set. When we classified benign tumors against control
samples, we obtained an AUC-ROC of 70% and AUC-PR of 46%,
which is lower than the result reported above.

In the case of the raw spectrum-based approaches, the model
trained on the cropped spectrum [i.e. the model presented in
Cakmakci et al. (2020)] had a median AUC-ROC of 87.6% and
AUC-PR of 93.8%. Using the full spectrum gives a similar perform-
ance which is tied with the model built on the uncharacterized re-
gion in terms of AUC-PR but achieved a lower median AUC-ROC.
This shows the benefit of our targeted analyses. Note that training
with the raw spectrum is also computationally more demanding
than the models proposed here—up to 10� running time.

We investigate the benefit of quantifying and using more metab-
olites in the prediction task and show that adding more metabolites
improves the results (Supplementary Figures S8a and S9a). We find
that 2-hydroxyglutarate and NAA metabolites are important for
tumor and healthy sample distinction (see Supplementary Table S4)
which is also supported by the literature (Bulik et al., 2013; Choi
et al., 2012). We also show that when using only informative parts
of the raw spectrum (discontinuous) also improves the classification
task performance (see Supplementary Figure S7a). These results also
show that the raw spectrum is noisy and a carefully designed tar-
geted analysis performs better. See Section S3 of Supplementary
Text for details of this analysis.

We demonstrate the results of the proposed methods trained on
ERETIC-CPMG sample set in Figure S13 of Supplementary Text.
The best performing model, which was also trained on ground truth
metabolite concentrations, has a median AUC-ROC of 91.2% and
AUC-PR of 96.7%. Using predicted metabolites and uncharacter-
ized region resulted in a very similar performance (�90% AUC-
ROC and �96% AUC-PR). While overall, using ERETIC-CPMG is
better than CPMG, the performance gain is mainly due to the larger
dataset size (393 vs 500).

We repeat this analysis for distinguishing benign and aggressive
tumors (subsidiary task) and the results are presented in Section S4
of Supplementary Text. As a result, we detected that myo-Inositol
metabolite was important for discrimination between aggressive and
benign tumors, which is also supported by the literature (Castillo
et al., 2000). We also observed that the model constructed on the
uncharacterized region performed poorly on the subsidiary task.

3.4 Validation on an independent dataset
We tested the performance of the pipeline on an independent
HRMAS NMR dataset obtained from Firdous et al. (2021). The
raw FID files are preprocessed as we did for our own dataset and
obtained the full CPMG spectrum vector of length 16 314. We nor-
malized the signal intensities with respect to the maximum intensity
observed in our dataset and we shifted the signal 1515 ppm to the
left for calibration and to align with the signal we used during
training.

This dataset contains HRMAS NMR plasma samples of 42 indi-
viduals. First, we predicted the quantities of 37 metabolites consid-
ered for all samples, using the models described in Section 3.2. Out
of 42, 26 samples are glioma samples and 16 samples are from
healthy controls. Using the best parameter settings for the RF model
(see Section 3.1.2), we trained a final model to distinguish tumor
and control samples using the full CPMG training set (n¼393). We
obtained an AUC-ROC of 79% and AUC-PR of 82%.

Out of the 26 glioma samples, 9 are low grade and 17 are high
grade. Using the best parameter settings for the RF model (see
Section 3.1.2), we trained a final model that uses the full CPMG gli-
oma training set (n¼156) to distinguish benign and aggressive
tumors. We obtained an AUC-ROC of 72% and AUC-PR of 89%.

These results are lower than the performance we obtained on our
dataset. Nevertheless, we show that despite the variation in the data
due to the cross-site analysis, we were able to obtain arguably high
AUC-ROC and AUC-PR values.

4 Discussion

Targeted analysis has the advantage of discarding the noise regions
and reducing the dimension of the spectrum over the untargeted
analysis. It is also more interpretable as variables of interest can be
more easily detected. On the other hand, selecting targeted metabo-
lites and the quantification procedure potentially adds bias to the
downstream analyses. Yet, we show that predicting quantities of
certain metabolites and using these to distinguish control and tumor
samples perform better than the untargeted approach as machine
learning techniques can effectively deal with the above-mentioned
bias and also fit in the time frame of surgery.

One limitation of the study is the limited size of the training
dataset to train end-to-end complex machine learning models. While
the dataset we use is the largest of its kind, it prohibits using deep
learning models. Hence, we opt for an RF-based model and had to
incorporate metabolite quantification task. We foresee that with
increasing dataset sizes such problems will attenuate and more com-
plex models will be able to fit directly to the raw signal.

Our metabolite quantification learning attempt is the first for
this type of data. Other methods rely mainly on work on image data
and simulation to attain higher sample sizes. For these reasons, they
are not directly comparable to our approach which works on
HRMAS NMR data and is trained on a case control group. There is
uncertainty added to the input once the predicted metabolite levels
are used for the downstream classification task. However, as our
results show, the predicted metabolite levels work on par with using
ground truth levels. While the expert decision on ground truth me-
tabolite levels is the best we can obtain, there might be systematic
differences that lead to noise in these labels. The added uncertainty
in the input that comes with the predictions can help the down-
stream task to generalize better and avoid over-fitting.
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