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Abstract

The metabolome, final downstream product of the genome and exogenous sources, is characterized by a large number of small molecules
exhibiting a huge diversity of chemical structures and abundances, requiring complementary analytical platforms to reach its extensive coverage.
The metabolome is dynamic, reflecting the continuous fluxes of metabolic and signalling pathways. Metabolomics is the detection and quantitation
of metabolites in biological samples. Furthermore, recently emerged technologies have enabled us to determine spatiotemporal distribution of
biological molecules present in tissues. In a two-part article, we present a description of usual metabolomics technologies, workflows and strategies
leading to the implementation of new clinical biomarkers. In this first part, after introducing metabolomics concepts, we review analytical
techniques used in this setting.
# 2016 Elsevier Masson SAS. All rights reserved.
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Résumé

Le métabolome, produit terminal issu du génome et de sources exogènes, est caractérisé par un nombre important de petites molécules. Ces
molécules présentent une très grande diversité de structures chimiques et d’abondances, nécessitant des plateformes analytiques complémentaires
pour une description globale. Le métabolome est dynamique, reflétant les flux continus de voies métaboliques et de voies de signalisation. La
métabolomique consiste à détecter et quantifier les métabolites présents dans des échantillons biologiques. Des technologies récentes nous
permettent de déterminer la distribution spatiotemporelle des molécules présentes dans les tissus. Dans deux articles, nous présentons une
description des technologies utilisées en métabolomique, des workflows et des stratégies menant à l’introduction de nouveaux biomarqueurs en
clinique. Dans cette première partie, après avoir introduit les concepts liés à la métabolomique, nous passerons en revue les techniques analytiques
utilisées dans ce domaine.
# 2016 Elsevier Masson SAS. Tous droits réservés.
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1. Basic concepts

1.1. Metabolomics

Systems biology aims at model complete biological systems
and pathological processes by overcoming the current
limitations of organism and disease complexity with tools
enabling high-throughput and large-scale analysis of complex
molecular composition [1–3]. This discipline includes so-called
omics sciences: genomics (DNAs) and transcriptomics
(mRNAs) for the ‘‘blueprint’’ assessment; proteomics (pro-
teins) for measuring the means by which these ‘‘orders’’ are
carried out; and metabolomics (metabolites) for assessing the
‘‘true real-time’’ processes [2,4]. As genes and proteins are
subject to epigenetic and post-translational modulations,
respectively, metabolites reflect the functional level of a
biological system (e.g. cell, tissue, body fluid, organism) taking
into account environmental stresses [5,6]. Metabolites as
downstream products provide a direct, integrated and most
‘‘up-to-date’’ insight into the state of a system namely the
phenotype [2,7].

Metabolomics is an interdisciplinary ‘‘omics’’ approach
described as the global, unbiased, qualitative and quantitative
analysis of the metabolome in a biological system [1,8–10].
Metabolome is the total metabolite content of a biological
sample. As the body is composed of approximately 500 diffe-
rent cell types, we can consider that there are at least as many
different cellular metabolomes, as well as those of the
extracellular fluid compartments and the various secretory
and excretory biological fluids [10]. However, metabolic
profiles are not limited to endogenous metabolites but also
contain metabolites originating from exogenous sources such
as diet, drug and gut microbiota. Mammalian gut microflora
metabolic cross-talks represent an increasingly studied major
determinant in health or pathologic conditions [4,11,12].
Therefore, metabolomics covers a broad range of small
molecules (metabolic intermediates, hormones, signalling
molecules and secondary metabolites) such as amino acids,
peptides, lipids, nucleic acids, carbohydrates, organic acids,
ketones, aldehydes, amines, steroids, vitamins, etc. [4,6,9,11].
It is still difficult today to estimate the number of metabolites in
human metabolome [11]. The most comprehensive database
on human metabolome (Human Metabolome Database,
HMDB) currently includes more than 40,000 metabolite
entries. While other ‘‘omics’’ study sets of relatively
chemically similar biopolymers (4 different nucleotides and
22 amino acids), metabolomics covers structurally heteroge-
neous and physico-chemical diverse molecules. Furthermore,
the dynamic range of metabolite concentrations exists across
nine orders of magnitude [13–15]. The chemical variability of
the metabolome requires the use of multiple analytical
platforms allowing simultaneous measurement of such a
broad spectrum of bioactive compounds [1]. Moreover,
metabolomics offers a holistic approach to clinical medicine
and relies on multiple science areas like analytical biochemis-
try, biology, bioinformatics, epidemiology and clinical
research [10,16].
1.2. Strategies to assess the human metabolome

Metabolomic studies can be divided into two different
approaches for the detection of metabolites: untargeted and
targeted metabolomics [16–18].

The untargeted or global approach has the aim of
simultaneously measuring as many metabolites as possible
(including analyte identification of unknown signals) without
having prior knowledge of the nature and the identity of
assessed metabolites. Datasets are particularly complex and a
number of metabolites remain uncharacterized. Minimal pre-
treatment has to be applied to prevent the loss of metabolites
[6,17,18]. Numerous analytical platforms have been used, such
as nuclear magnetic resonance (NMR), gas chromatography-
mass spectrometry (GC-MS) or high-resolution mass spec-
trometry (HRMS). Although untargeted metabolomics is
limited to qualitative and semi-quantitative information, this
approach enables novel areas of metabolism to be identified and
is therefore often hypothesis generating [16,17].

Targeted approach refers to the exact quantification of
known and expected metabolites by employing analytical
standards. In this strategy, predefined metabolite-specific
signals are used to quantify, precisely and accurately,
concentrations of a limited number of metabolites [16,18].
Sample preparation and optimal instrument adjustment are key
elements for accurate quantification of selected metabolites. In
contrast to untargeted metabolomics, the targeted approach is
driven by specific hypothesis that motivates the investigation of
particular biochemical pathways [6].

2. Insight into technology

2.1. Introduction

Identification and quantification of metabolites can be
achieved by sophisticated methods, which are supplementary
and complementary to one another [8,19]. Nuclear magnetic
resonance (NMR) and mass spectrometry (MS) technologies
offer multifaceted and powerful approaches to describe parts of
the metabolome [19,20]. However, none of these techniques
alone can cover the entire metabolome of an organism. The
choice is guided by the strengths and limitations of the different
techniques [14]. Depending on the goals of the study, these
analytical tools may be used either alone, in parallel or in
combination [8,20].

2.2. NMR-based metabolomics

NMR spectroscopy is an analytical tool for the structure
elucidation of a molecule. This technique is based on the energy
absorption and re-emission of the atom nuclei due to variations
in an external magnetic field [21]. In the metabolomics study,
the principal analysis is the proton (1H NMR) due to its
naturally abundance in biological sample. However, other
experiments can be used like HSQC (1H-13C correlation) or
TOCSY (1H-1H correlation) for 2D spectra or 13C NMR and 31P
NMR for 1D spectra. These analyses provide supplementary
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information about metabolites [22]. NMR spectroscopy is a fast
and reproducible analytical technique. This technique has the
major advantage of providing a qualitative and quantitative
analysis at the same time.

2.3. MS-based metabolomics

MS has been defined by the International Union of Pure and
Applied Chemistry (IUPAC) as ‘‘the study of systems by a
process of forming gaseous ions, with or without fragmentation,
which are then characterized by their mass/charge ratios (m/z)
and their relative abundances’’. The studied species must be
charged particles (ions) because mass separation relies on the
movement of these particles under the influence of electric and/
or magnetic fields. High vacuum conditions, where the mean
free path of charged particles is sufficient, are required to ensure
that ions mostly travel without collisions [23]. Nonetheless, ion
separation by m/z can be also assessed in field free regions (e.g.
time-of-flight analyzer) [24]. The term MS encompasses a wide
range of technologies, which differ in principles and
performances [8,23].

MS-based metabolomics usually requires a prior step of
sample preparation. This step may have several objectives; e.g.
to extract analytes from a complex biological matrix (as liquid-
liquid or solid-phase extractions), to make analytes more
volatile and/or less polar (derivatization) or to pre-concentrate
the analytes to enhance their detection limits [25].

Four major steps can be described for analysis by MS: (1) a
sample introduction system (chromatographic system or
insertion probe) introduces compounds to be analyzed in the
mass spectrometer; (2) ions are produced from neutral sample
molecules in an ionization source; (3) ions are then separated
Fig. 1. General scheme of a mass spectrometer. GC: gas chromatography; HPLC:
chromatography; CE: capillary electrophoresis; EI: electron impact; ESI: elect
atmospheric-pressure photoionization; MALDI: matrix assisted laser desorption; D
Schéma général d’un spectromètre de masse. GC : chromatographie en phase 

chromatographie liquide ultra-haute pression ; CE : électrophorèse capillaire ; EI : i
pression atmosphérique ; APPI : photo-ionisation à pression atmosphérique ; MALD
according to their mass-to-charge ratio (m/z) in a mass analyzer
(4); an ion detector enables determination of ion abundance
(Fig. 1). These steps take place with or without fragmentation
of ions depending on the type of method [23,26–28].

2.3.1. Introduction methods
Direct-infusion MS of crude mixtures without prior

chromatographic separation has been described as very
susceptible to ion suppression (which occurs when ionization
capacity is overcome by large quantities of analytes or
background ions) [8,29]. Despite improved ionization techni-
ques, direct injection of the sample in the mass spectrometer is
less common than prior chromatographic separation of the
analytes especially for a complex matrix as biological samples.

Thus, hyphenated techniques combining chromatography
separation with MS detection are widely used in the
metabolomics field. Chromatographic separation of metabo-
lites reduces matrix effects, separates isomers, provides
additional data for metabolite characterization and enhances
quantification. Usual chromatography methods in metabolo-
mics are gas chromatography (GC), high-performance liquid
chromatography (HPLC or LC) and less commonly capillary
electrophoresis (CE) [8,19].

2.3.1.1. Gas chromatography. The basic principle of GC
involves the volatilization of the sample heated in an injector
and the separation of its components in a heated hollow tube
(column). The difference in volatility and polarity of the
compounds is responsible for differences in distribution
between the carrier gas (hydrogen or helium) and a stationary
phase (coating of the column). A component that spend little
time in the stationary phase elute more quickly. This technique
 high-performance liquid chromatography; UHPLC: ultra-high pressure liquid
rospray ionization; APCI: atmospheric-pressure chemical ionization; APPI:
ESI: desorption electrospray ionization.

gazeuse ; HPLC : chromatographie liquide haute performance ; UHPLC :
mpact électronique ; ESI : ionisation électrospray ; APCI : ionisation chimique à

I : matrix assisted laser desorption ; DESI : desorption electrospray ionization.
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is suitable for compounds, which can be vaporized without
decomposition and is also widely used with volatile-rendered
compounds using derivatization however, extending the
analysis time [29–31].

2.3.1.2. Liquid chromatography. In LC (or HPLC), the mobile
phase is a liquid flowing through a column packed with
chemically derivated beads forming the stationary phase [29].
LC is considered more versatile than GC and is suitable for
separating metabolites independently of their polarity or
volatility [20,27,32]. Metabolite separation in LC is determi-
ned not only by their physicochemical properties (e.g.,
hydrophobicity, charge, size) but also by their affinity with
the stationary phase [29]. LC has benefited from many
improvements among which should be mentioned ultra-high
pressure liquid chromatography (UHPLC) and capillary LC.
Speed, resolution and sensibility have been increased in
available UHPLC systems by reducing packing-particle
diameter from 5 mm to less than 2 mm, operating at pressures
within the 6000–15,000 psi range. With the capillary
chromatography, size reduction of the column is accompanied
by the decrease in flow rate, which also increases the sensitivity
[5,8,20,32–34].

2.3.2. Ionization source
To be analyzed in a spectrometer, a molecule must be in the

form of gas-phase ions (i.e., in a charged state within a high
vacuum) [27,29]. This is quite straightforward when using GC
because molecules are already in gaseous form by the time they
reach the mass spectrometer. There are several techniques
available for ionization in GC-MS and LC-MS devices but the
coupling is more problematic for LC-MS because gas-phase
ions must be produced before entering the MS [27].

Internal energy transferred during the ionization process is an
important characteristic of an ion source. Very energetic
ionization techniques cause extensive fragmentation yielding a
characteristic mass spectrum. Softer techniques produce ions of
the molecular species [27]. The most often-used ionization
methods in the field of metabolomics are electrospray ionization
(ESI–soft ionization method) and electron impact (EI) ionization
(EI–hard ionization) [19]. EI and ESI are widely used in GC-MS
and LC-MS, respectively. Although other types of ionization
sources are used in metabolomics studies, only these two types of
ion sources will be discussed here.

When working conditions (e.g., electron energy, tempera-
ture and pressure) are kept constant spectra obtained by EI
exhibit good reproducibility. This feature enables not only a
straightforward comparison between spectra coming from
different manufacturers but also the establishment of useful
spectral libraries for untargeted metabolomics [28]. These
libraries are available only for volatile and thermally stable
compounds as far as EI is only implemented in GC-MS
spectrometers [27].

The analytes (in solution) are introduced by nebulization as
charged droplets into an ESI source, ultimately leading to the
formation of gas phase ions. Ions are produced at atmospheric
pressure and focused through vacuum pumping stages [27,33].
ESI can be used for metabolites as well as for larger molecules
like peptides and proteins. Therefore, ESI is the most
commonly used technique in LC-MS ‘‘omics’’ studies
including metabolomics [19,33,35].

2.3.3. Mass detectors
To date there is an overwhelming amount of available

detectors for MS and the reader is referred to specialized
textbooks for detailed information concerning each detector.
Even when all detectors measure a mass-to-charge ratio (m/z)
for gas-phase ions they have different performances according
to mass range limits, analysis speed, mass accuracy and mass
resolution [27,29,35].

2.3.3.1. Ion trap. An ion trap uses a RF quadrupolar-
oscillating field to trap ions in two or three dimensions: 2D
or 3D ion traps. Ions of different masses are trapped on a 3D or
2D trajectory and expelled successively according to their
mass-to-charge ratio so as to obtain a spectrum [27].

2.3.3.2. Quadrupole. A quadrupole analyzer is made of four
cylindrically or hyperbolically shaped rod electrodes extending
in the z-direction parallel to each other. Positive ions entering
the space between the rods in z-direction are drawn towards the
negative charged rod. In the same way, negative ions will be
drawn toward the positive charged rod. If the sign of the
potential, which is composed of a DC and a RF component,
switches before ion discharges itself on the rod, the ion will
deviate on the x- and y-directions. Ions are separated based on
the stability of the trajectories in oscillating electric fields
according to their mass-to-charge ratio [27,28].

2.3.3.3. Time-of-flight (TOF). Ions are accelerated by an
electric field and then separated according to their velocities in
a free-field region (flight tube of known length). Ion drift-time
depends on mass-to-charge ratio: lighter ions arrive earlier at
the detector than the heavier ones. Mass resolution has been
enhanced in today’s TOF analysers by lengthening the flight
tube or by adding a reflectron. A reflectron creates a retarding
electric field that acts as an ion mirror sending ions back
through to the flight tube [27,28].

2.3.3.4. Tandem MS. Tandem mass spectrometry or MS/MS
involves at least two stages of mass analysis. MS/MS
experiments are conducted in two separate steps either in
space or in time. Methods involving two steps separated in
space (beam-based MS/MS) rely on the coupling of two
physically distinct mass analyzers separated by a collision cell.
The first analyzer isolates among ions produced by the source a
precursor ion, which undergoes a fragmentation in a collision
cell. Fragments called ion products are then assessed by a
second analyzer [24,27,35]. The most common MS/MS
instruments are triple quadrupole (QqQ–with q corresponding
to a quadripolar or hexapolar cell collision) and quadrupole-
time-of-flight (Q-TOF) mass analyzers. These analyzers can be
operated in different scan modes according to the objectives of
the study (e.g. metabolite identification or quantitation).



Fig. 2. PubMed search results using ‘‘mass spectrometry imaging’’ or ‘‘mass
spectrometric imaging’’ or ‘‘imaging mass spectrometry’’ as the keywords.
Résultat de la recherche dans PubMed avec les mots-clés « mass spectrometry
imaging » ou « mass spectrometric imaging » ou « imaging mass
spectrometry ».
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2.3.3.5. High resolution MS. HRMS is a prerequisite for
untargeted metabolomics and the discovery of new metabolites
or biomarkers. A large number of data is commonly obtained
from analytical platforms based on MS. Comparative metabo-
lomics studies provide usually a huge amount of spectra. For this
reason the selection of the instrumentation is an important issue
since it is a key factor regarding the number of peaks detected and
their sensitivity/specificity. Because of their high resolution,
mass accuracy, and full-spectrum acquisition capabilities, high
resolution (HR) mass analyzers such as Orbitrap, TOF, or
hybrids analyzers like quadrupole-time-of-flight (QTOF) and
quadrupole Orbitrap (Q Orbitrap) are adequate to develop
metabolic profiling methods in complex biological matrixes
e.g. biofluids or tissue extracts [20,36,37]. Additionally less
more developed for the moment but increasing year after year,
the expensive very high resolution Transform Fourier induced
cyclotron resonance (FT-ICR) mass spectrometer that allows
the identification of metabolites with the highest mass
accuracy and determination of the putative structure are
excellent tools for this purpose as well.

2.4. Intact tissue metabolomics

2.4.1. High resolution magic angle spinning (HR-MAS)
NMR

Metabolomics assisted by NMR spectroscopy has started at
the beginning of the eighties with the first application of C.E.
Mountford [38]. The authors used RMN liquid techniques
directly on biopsy sample. This experiment highlighted a major
loss of resolution due to pseudo-solid state of sample. In fact
inside tissues samples, metabolites were immobilized which
involved interaction in space (dipolar interaction) and magnetic
susceptibility. In order to obtain a better resolution, a NMR
technique for solid state [39] has been used for biopsy. This
experiment allows working on magic angle (54.78) with sample
rotation in order that average interaction. NMR-HRMAS, is an
advanced technology generating a quality spectra similar to
liquid spectra [40]. This experiment is often used for biopsy
analysis [41] involving sample preparation, which is easy and
fast to limit bias preparation.

2.4.2. MS imaging
Understanding the complex biochemical processes that

occur within living biological systems requires not only the
elucidation of the molecular entities involved in these
processes, but also their spatial localization and distribution
within the organism. In line with that, a technique called
imaging mass spectrometry has recently emerged. This new
technology enables us to determine spatiotemporal distribution
of biological molecules present in tissue slices by direct
ionization and detection without the need of previous time-
consuming molecule derivatization. This technique and the
word mass spectrometry imaging (MSI) was first coined by the
pioneer work of Caprioli’s group in 1997 [42]. A simple
interrogation in Pubmed with the words ‘‘mass spectrometry
imaging’’ (or ‘‘mass spectrometric imaging’’ or ‘‘imaging mass
spectrometry’’) in December 2015 gives about 1400 hits of
publications, indicating how fast this technique has growing
this last decade (Fig. 2). MSI has found a place as major
scientific fields and is applied on all type of tissue from all types
of living organisms (human, animals, plants, and microbes).
MSI is now widely used for in situ imaging of endogenous or
exogenous molecules such as proteins, peptides, lipids,
metabolites, drugs, pesticides and their fragments or conju-
gates. MSI is a great new tool for pathological analysis and the
investigation of disease mechanisms. To date, MS hyphenated
chromatography techniques such as LC-MS or GC-MS has
been known to be a conventionally used strategy for
metabolomics [43–45]. However, these methods have a major
drawback in the analysis of tissue samples because of the
requirement of metabolite extraction, which causes the loss of
information on the spatial localization of the metabolites. In
contrast, imaging techniques capable of determining the spatial
localization of molecules have revolutionized our approach to
diseases by allowing us to directly examine the pathological
process, thereby giving us a better understanding of the
pathophysiology (Fig. 3). MSI is therefore a promising
technique that could be used for biomarker discovery with
additional spatial information. Three main ionization techni-
ques are used nowadays in MSI. The most popular technique
currently used in MSI is undoubtedly matrix assisted laser
desorption (MALDI), and in less extend nanostructure-initiator
MS (NIMS) which could be considered as an improved Direct
ionization on silicon (DIOS) method [46,47] and Desorption
electrospray ionization (DESI), developed by Cooks et al.,
2004. MALDI MSI is the most popular technique coupled to
HRMS with a spatial resolution of up to 5 mm. Additionally
MALDI MSI takes benefit from the recent progress that have
been made in the development of new matrices more specific
for a particular class of metabolites e.g. recently, 9-
aminoacridine (9-AA) was reported as a suitable matrix for



Fig. 3. Matrix-assisted laser desorption ionization imaging mass spectrometry
(MALDI-MSI): intact fresh frozen sections of colorectal cancer tissue analysis
with simultaneous localization and quantification of lipids in different histo-
logical regions of interest. A. Overlapped MALDI spectral profiles for cancer-
ous tissue (red), non-cancerous tissue (blue) and from regions outside the
margin of the tissue section (black, matrix only). B. Digitized image of the
corresponding haematoxylin and eosin stained section for this sample with
morphological regions of interest defined by a solid line (Mc: mucosa, T:
tumour tissue, M: muscle). C, D, E, F. MALDI-MSI ion images revealing the
distribution of m/z 478.3 (LysoPC(16:0); images C and D) and m/z 504.3
(LysoPC(18:1); images E and F) in cancer-bearing (centre of tumour; images C
and E) and non-cancer-bearing (healthy mucosa 10 cm from the tumourmargin;
images D and F) tissue sections. These ionic species are seen to be specifically
over-expressed in cancerous regions with little expression evident in healthy
tissue.
Matrix-assisted laser desorption ionization imaging mass spectrometry
(MALDI-MSI) : analyse de coupes intactes fraîches congelées de tissu de
cancer colorectal avec localisation et quantification simultanées des lipides
dans différentes zones histologiques d’intérêt. A. Profils spectraux MALDI se
chevauchant des tissus cancéreux (rouge), des tissus non cancéreux (bleu) et de
régions en dehors de la zone de la coupe de tissu (noir, matrice uniquement).
B. Image numérisée de la coupe correspondante colorée par l’hématoxyline et
de l’éosine pour le même échantillon avec les régions morphologiques d’intérêt
délimitées par une ligne continue (Mc: muqueuse, T : tissu tumoral, M : muscle).
C, D, E, F. Images MALDI-MSI d’ions révélant la répartition des ions m/z 478,3
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low-molecular-weight metabolite analysis [48]. Lipids became
the first targets for MSI studies of endogenous metabolites
because the m/z range of most lipid molecules was more than
700. Lipids are also abundant in tissues (e.g., more than 60%
dry weight of brain tissue) and are easily ionized because of the
presence of a polar head [49,50]. However, the application of
MSI to the study of endogenous metabolites has received
considerable attention because metabolites are the result of the
interactions of a system’s genome with its environment and a
total set of these metabolites represents more closely the
phenotype of an organism under a given set of conditions.
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