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Objectives. The objectives of the present study are to determine if a metabolomic study by HRMAS-NMR can (i) discriminate
between different histological types of epithelial ovarian carcinomas and healthy ovarian tissue, (ii) generate statistical models
capable of classifying borderline tumors and (iii) establish a potential relationship with patient’s survival or response to
chemotherapy. Methods. 36 human epithelial ovarian tumor biopsies and 3 healthy ovarian tissues were studied using 1H HRMAS
NMR spectroscopy and multivariate statistical analysis. Results. The results presented in this study demonstrate that the three
histological types of epithelial ovarian carcinomas present an effective metabolic pattern difference. Furthermore, a metabolic
signature specific of serous (N-acetyl-aspartate) and mucinous (N-acetyl-lysine) carcinomas was found. The statistical models
generated in this study are able to predict borderline tumors characterized by an intermediate metabolic pattern similar to the
normal ovarian tissue. Finally and importantly, the statistical model of serous carcinomas provided good predictions of both
patient’s survival rates and the patient’s response to chemotherapy. Conclusions. Despite the small number of samples used in this
study, the results indicate that metabolomic analysis of intact tissues by HRMAS-NMR is a promising technique which might be
applicable to the therapeutic management of patients.

1. Introduction

Epithelial ovarian carcinoma is one of the most frequent
malignancies of the female genital tract and represents the
leading cause of death among women with gynecologic
cancer. The overall 5-year survival still remains at about
44% [1]. Clinicians face two key problems: late diagnosis at
advanced stages which is more difficult to treat and resistance
to treatment of the majority of recurrences. Thus, there is
a need for improved imaging methods to predict treatment
response and detect tumor recurrence not invasively [2, 3].
The unfavorable statistics in ovarian cancer patients reflect,
in part, a poor understanding of the molecular pathogenesis
of this heterogeneous malignancy [4].

Several studies have been performed for the metabolic
characterization of ovarian carcinomas using ex vivo 1H
nuclear magnetic resonance (NMR) spectroscopy in tumor
tissues [5, 6], cyst fluid [7–9], or cell lines [10] and by in
vivo 1H MR spectroscopy [9, 11–14]. So far, no studies have
yet been performed using 1H high-resolution magic angle
spinning (HRMAS) NMR spectroscopy. This technique
affords a detailed and accurate analysis of the metabolic
composition of intact tissue specimens without resorting to
time-consuming extraction techniques.

The objectives of the present study were to determine if a
metabolomics study using 1H-HRMAS NMR spectroscopy
could (i) discriminate between different histological types
of epithelial ovarian carcinoma and healthy ovarian tissue,
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(ii) generate statistical models capable of classifying border-
line tumors, and (iii) establish a potential relationship with
patient’s survival or response to chemotherapy.

2. Materials and Methods

2.1. Patients Population. Thirty six human epithelial ovarian
tumor biopsies obtained from the tumor bank of the Uni-
versity Hospitals of Strasbourg were selected retrospectively
for this preliminary study according to the following criteria:
(1) absence of mixed epithelial and nonepithelial carcinoma,
(2) absence of any anticancer treatment prior to surgery, (3)
tumor tissue sample quantitatively and qualitatively (viable
tumor/necrosis ratio) adequate to perform a correct HRMAS
analysis, (4) tissue specimens collected immediately after
surgery and stored at –80◦C, and (5) absence of tissue
samples pollution by the histopathological fixing medium.

Histopathological examination of the selected specimens
revealed 22 serous, 4 endometrioid, and 5 mucinous car-
cinoma as well as 5 borderline tumors (3 serous and 2
mucinous). The tumors were also graded using the FIGO
[15] and the Silverberg [16] grading systems. Normal
contralateral ovarian tissue from three of these patients
served as controls.

A clinical longitudinal study including response to the
first-line chemotherapy, the date of recurrence, and the
survival was performed on 15 patients with serous ovarian
cancer.

2.2. HRMAS Analysis. HRMAS spectra were recorded on a
Bruker Avance III 500 spectrometer operating at a proton
frequency of 500.13 MHz following an established proto-
col [17]. This instrument is installed at the Hautepierre
University Hospital in Strasbourg and is dedicated to the
analysis of biopsies by HRMAS. It is operated by qualified
scientific and medical personnel in the context of the
CARMeN project which aims at the creation of an extensive
metabolic database covering most current human tumors.
The amount of tumoral tissue used ranged from 16 to 20 mg.
All NMR experiments were conducted at a temperature
of 4◦C on samples spinning at 3502 Hz. For each biopsy
sample, a one-dimensional proton spectrum using a Carr-
Purcell-Meiboom-Gill (CPMG) pulse sequence was acquired
(Bruker cpmgpr1d pulse sequence). The number of loops was
set to 328 resulting in a the CPMG pulse train of total length
93 ms. The CPMG experiment was acquired with the fol-
lowing parameters: sweep width 14.2 ppm, number of points
32 k, relaxation delay 2 s, and acquisition time 2.3 s. A total
of 128 FID were acquired resulting in an acquisition time of
10 min. The FID was multiplied by an exponential weighing
function corresponding to a line broadening of 0.3 Hz prior
to Fourier transformation. All spectra were processed using
automatic base-line correction routines. 1H spectra were
referenced by setting the lactate doublet chemical shift to
1.33 ppm. In order to compare the metabolic content present
in different samples and to obtain absolute concentration
values, a synthetic digital Eretic signal was added to all the
1D spectra at 10.5 ppm [18, 19]. The principles used for the
measurement of the concentrations of metabolites in biopsy

specimens are similar to those used in liquid samples except
that the results are expressed in mmole·kg−1.

For the purpose of confirming resonance assignments,
complementary 2D homonuclear 1H-1H TOCSY and het-
eronuclear 1H-13C HSQC experiments were recorded on 8
samples [17]: 3 serous carcinoma, 1 endometrioid carci-
noma, 1 mucinous carcinoma and 3 healthy ovarian tissues,
respectively.

2.3. Statistical Analysis. Principal component analysis (PCA)
and partial least square discriminant analysis (PLS-DA)
were conducted on 1D 1H CPMG HRMAS spectra of the
healthy ovarian tissues and of the serous, endometrioid, and
mucinous carcinomas using the same established protocol
[17]. The spectral region between 4.7 and 0.5 ppm of each
1D CPMG NMR spectrum was automatically binned into
regions of 0.01 ppm using the AMIX software (Bruker
GmbH, Germany). This procedure minimizes the effect
of peak shifts due to pH variations. The peak integral
within each 0.01 ppm region was computed and normalized
with respect to the total integral of the spectrum in the
4.7–0.5 ppm region. This process generated an X data
matrix containing 421 columns (chemical shifts) and 36
rows (corresponding to healthy ovarian tissues and serous,
endometrioid and mucinous carcinomas). Data sets were
then imported into the SIMCA P 11.0 software (Umetrics
AB, Umeå, Sweden) and preprocessed using unit variance
scaling of the X columns by weighing each integral region
by 1/SDk , where SDk represents the standard deviation
of the kth column in the X matrix. The X matrix was
analyzed using principal component analysis (PCA) within
the SIMCA P 11.0 software package. In a PCA analysis, the
first component (PC1) represents the axis that explains the
largest variance in the set of samples studied. The subsequent
components (PC2, PC3, . . .) explain the residual variance
in decreasing order of importance. Each axis is built using
a linear combination of the different signals in the spectra
(chemical shifts). This procedure allows to evaluate quickly
the quality of the data and to identify possible outliers.
After the PCA analysis, partial least square discriminant
analysis (PLS-DA) [20] was conducted in order to build a
statistical model that optimizes the separation between the
two classes of patients. The number of components of the
PLS-DA model was determined by cross-validation. The first
PLS-DA component is the one that is best correlated with
the Y response of the samples. The Y response contains the
information used to build the model (histology, patient’s
survival, and response to chemotherapy). Each component
is built using a linear combination of the different signals
in the spectra. The class membership of each sample was
iteratively predicted, using the results to generate a goodness
of fit measure (Q2 = 1− PRESS/SS) for the overall model.
PRESS is the predicted squared sum of error and represents
the squared differences between observed and predicted Y
values when each sample is kept out of model development
and SS is the residual sum of squares of the previous
dimension. The maximum theoretical value for Q2 is equal
to 1 for a perfect prediction. However, a Q2 value superior to
0.5 is generally considered to be a decent predictor.
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Figure 1: Representative 1D 1H CPMG HRMAS spectra of healthy ovarian tissues (a) and endometrial (b), mucinous (c) and serous (d)
carcinomas. Partial metabolite assignment in the 4.7–0.5 ppm region is indicated. The numbers refer to the metabolites listed in Table 1. The
metabolic content of healthy and cancerous biopsies can be directly compared, since the intensity of each spectrum was normalized with
respect to the amplitude of the digital Eretic signal and the weight of biopsy present in each sample.

3. Results

The 1D 1H CPMG HRMAS spectra are characterized by a
high resolution and a low level of lipid signals which allowed
the identification of a total of 38 different metabolites
(Table 1). Typical 1D HRMAS spectra of healthy ovarian
tissue and of the three different histological types of epithelial
ovarian carcinoma tissues are presented in Figure 1 along
with a partial metabolite assignment. Only the 4.7–0.5 ppm
region used in the subsequent statistical analysis is shown.
The PLS-DA analysis applied to the all-ovarian biopsies
generated a two component PLS-DA model characterized by
a faithful representation of the Y data (R2Y = 0.75) and by
a good cumulative confidence criterion of prediction (Q2 =
0.50). These results demonstrate an effective difference in the
metabolic pattern of healthy tissues and the three histological
types (Figure 2(a)).

3.1. Endometrioid Carcinoma. A PLS-DA analysis performed
on the same spectrum range 4.7–0.5 ppm revealed a clear

separation between the 4 endometrioid carcinoma samples
and the 3 controls (Figure 2(b), 2 component model,
R2Y = 0.96, Q2 = 0.45). Endometrioid cancer tissues
showed a statistically significant higher level of total choline
compounds (glycerophosphocholine, phosphocholine, and
choline) and succinate. Healthy ovarian tissues are charac-
terized by a higher level of aspartate. A PCA using only these
discriminating metabolites confirmed a clear differentiation
between endometrioid ovarian cancer and normal tissue
(2 component model, R2X = 0.96 and Q2 = 0.64).

3.2. Mucinous Carcinoma. PLS-DA analysis performed using
the spectrum range 4.7–0.5 ppm on the 6 mucinous carci-
noma samples and the 3 controls also allowed a good sepa-
ration (Figure 2(c), 2 component model, R2Y = 0.94, Q2 =
0.69). Mucinous cancer tissues showed a statistically signif-
icant higher level of N-acetyl-lysine. The healthy ovarian
tissue is characterized by a high level of taurine and myo-
inositol. The PCA analysis based on the most discriminating
metabolites showed a good separation between mucinous
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Table 1: 1H resonance assignments of the metabolites present in cancerous and healthy human ovarian tissues.

† Metabolites Group 1H chemical shift (ppm) 13C chemical shift

1 Isoleucine δCH3 0.94 13.90

γCH3 1.01 17.29

γCH2 1.51 27.30

αCH 3.65 62.34

2 Leucine δCH3 0.96 23.50

δ′CH3 0.90 25.10

γCH 1.71 —

βCH2 1.71 42.51

αCH 3.74 56.05

3 Valine γCH3 0.99 19.26

γ′CH3 1.05 20.70

βCH 2.31 31.99

4 Ethanol CH3 1.18 19.55

CH2OH 3.66 60.11

5 Fatty acids (a) (2)CH2 1.29 34.50

(1)CH2 1.30 25.47

6 Fatty acids (b) (2)CH2 2.02 27.22

CH2 2.81 28.14

(1)CH 5.32 130.55

(2)CH 5.33 132.36

7 Fatty acids (a) (b) (n)CH2 1.29 32.36

8 Fatty acids (c) (2)CH2 1.56 27.20

9 Lactate CH2 1.33 22.70

CH 4.12 71.17

10 Lysine γCH2 1.44 24.66

δCH2 1.71 29.16

βCH2 1.91 32.61

εCH2 3.01 41.92

11 Alanine βCH2 1.48 18.89

αCH 3.78 53.27

12 Glutamate βCH2 2.07 29.77

γCH2 2.35 36.00

αCH 3.77 57.15

13 Methionine εCH2 2.11 16.77

14 Glutamine βCH2 2.14 —

γCH2 2.45 33.51

αCH2 3.77 —

15 Aspartic acid βCH2 (u) 2.70 39.17

βCH2 (d) 2.80 39.17

αCH 3.90 54.93

16 Choline −N+-(CH3)3 3.21 —

βCH2 3.52 69.96

αCH 4.07 58.36

17 Phosphorylcholine −N+-(CH3)3 3.23 56.58

βCH2 3.62 68.89

αCH 4.19 60.92

18 Glycerophosphocholine −CH2-NH2
+ 3.24 —

αCH2 4.33 62.03

βCH2 3.69 68.62

CH2-HPO2 (d) 3.88 69.37

CH2OH 3.93 73.43

CH2-HPO2 (u) 3.95 69.37
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Table 1: Continued.

† Metabolites Group 1H chemical shift (ppm) 13C chemical shift

19 Arginine γCH2 1.72 26.67

βCH2 1.92 30.26

δCH2 3.23 43.27

20 Taurine −CH2-NH2
+ 3.26 50.22

−CH2-SO3
− 3.42 38.17

21 Proline δCH2 (u) 3.33 48.78

δCH2 (d) 3.41 48.78

αCH 4.10 64.39

22 scyllo-Inositol all Hs 3.34 76.37

23 myo-Inositol C5H 3.27 77.11

C1H, C3H 3.53 73.84

C4H, C6H 3.61 75.06

C2H 4.06 74.93

24 Glycine αCH 3.56 44.17

25 Threonine αCH 3.59 63.23

βCH 4.26 68.81

26 Glycerol 1,3 CH2OH(u) 3.58 65.06

1,3 CH2OH(d) 3.65 65.06

−CH(OH)- 3.78 74.85

27 β-Glucose C4H 3.41 72.44

C3H, C5H 3.47 78.60

C6H(u) 3.73 63.50

C6H(d) 3.90 63.50

C1H 4.65 —

28 α-Glucose C1H 5.23 —

29 Serine αCH 3.84 59.12

βCH 3.99 63.09

30 Creatine CH3 3.03 39.66

CH2 3.94 56.44

31 Asparagine αCH 4.00 54.15

32 Ascorbic acid CH2OH 4.02 72.12

C4H 4.52 80.96

33 Succinic acid (α,β,CH2) 2.41 —

34 Glutathione CH2-CONH 2.55 33.98

CH2-SH 2.96 28.40

CH-NH2 3.78 46.07

CH-NH 4.58 58.40

35 Acetate CH2 1.93 26.00

36 3-hydroxybutyrate CH2 1.20 24.29

βCH2(u) 2.29 49.11

βCH2(d) 2.39 49.11

CHOH 4.15 —

37 N Acetyl -Lysine βCH2(u) 1.69 —

βCH2(d) 1.80 —

CH2 2.04 24.80

εCH2 3.00 —

αCH 4.15 —

38 N Acetyl Aspartate CH2 2.02 24.65

αCH 4.39 55.97
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Figure 2: Score plot of the first two principal components (PC1, PC2) from PLS-DA model obtained when comparing: (a) Healthy
ovarian tissues (filled triangle) versus the 3 epithelial carcinomas: mucinous (open diamond), endometrioid (open square) and serous
(open triangle). Model parameters: R2Y = 0.75, Q2 = 0.50. (b) Healthy ovarian tissues (full triangle) versus endometrioid carcinomas
(open square). Model parameters: R2Y = 0.96, Q2 = 0.45. (c) Healthy ovarian tissues (full triangle) versus mucinous carcinomas (open
diamond). Model parameters: R2Y = 0.94, Q2 = 0.69. (d) Healthy ovarian tissues (full triangle) versus high Silverberg score (grade III)
of serous carcinomas (open triangle). Model parameters: R2Y = 0.91, Q2 = 0.68. In these models, the predicted borderline cases are
represented by filled circles (c, d) and the predicted low Silverberg score (grade I-II) serous carcinomas by open circles (d).

carcinoma and normal tissue (2 component model, R2X =
0.82, Q2 = 0.69). The model was used to predict the two
borderline mucinous cases: one specimen was classified with
mucinous carcinoma samples, while the second was classified
with control samples.

3.3. Serous Carcinoma. A PLS-DA analysis performed on the
CPMG data, using the spectrum range 4.7–0.5 ppm, was
not able to statistically separate serous carcinoma biopsies
from control cases. Similarly, a PLS-DA based on the FIGO
classification was not able to distinguish stage I, II, or III.

On the other hand, PLS-DA analysis based to the Sil-
verberg grading allowed the separation of the higher grades
of serous carcinoma (grade III, nine cases) from control
tissues (Figure 2(d), 2 component model, R2Y = 0.91, Q2 =
0.68). Serous cancer tissues showed a statistically significant
higher level of acetate, N-acetyl-aspartate, alanine, lysine,
threonine, glutamate, and succinate. The healthy ovarian

tissues are characterized by a higher level of taurine and
β-glucose. A PCA analysis based on these discriminating
metabolites confirmed a clear separation between Silverberg
grade III serous cancer and normal tissues (2 component
model, R2X = 0.76, Q2 = 0.6).

The PLS-DA model obtained was also used to predict
the classification of low Silverberg scores (grade I and II, 13
cases) and the borderline cases (3 cases). Figure 2(d) shows
clearly that unlike the higher Silverberg score, it was not
possible to find metabolically homogeneous group of low
Silverberg score of serous cancer cases. On the other hand,
this statistical model classified the 3 borderline tumors near
the control tissues.

3.4. Correlation of Spectroscopic Findings with Clinical Fol-
lowup. A PLS-DA analysis based on the 2-year survival rate,
showed a clear separation between the 2 groups (Figure 3(a),
2 component model, R2Y = 0.85, Q2 = 0.51) Patients
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Figure 3: Score plot of the first two principal components (PC1 and PC2) from PLS-DA models obtained when correlating the metabolic
data with: (a) Patient 24 months survival rate (superior to 24 months as open triangle inferior to 24 months as full triangle). Model
parameters: R2Y = 0.85, Q2 = 0.51. (b) Response to chemotherapy (positive response as open triangle negative response as full triangle).
Model parameters: R2Y = 0.85, Q2 = 0.42.

presenting a better survival rate (n = 11) showed a higher
level of glutamate, glutamine, aspartate, creatine, and glycine
comparatively to the poor survival rate group (n = 4), which
was characterized by a higher level of valine, leucine, and
lysine.

According to the response to chemotherapy, PLS-DA
showed also a good separation between the group responding
to treatment (n = 13) and the group resisting (n = 2)
(Figure 3(b), 2 components, R2Y = 0.85, Q2 = 0.42).
Patients resisting treatment showed a higher level of suc-
cinate and 3-hydroxybutyrate, while the group responding
to chemotherapy showed a higher amount of glutamate,
glutamine, aspartate, and creatine.

4. Discussion

The results presented in this study demonstrate clearly that
the 3 histological types of epithelial ovarian carcinomas and
normal tissue can be separated by the difference in their
metabolic pattern. We observed that N-acetyl-aspartate (at
2.02 ppm) appeared to be a specific metabolic signature
for serous carcinoma, while N-acetyl-lysine (at 2.04 ppm)
is a potential signature for mucinous carcinoma. In the
endometrioid carcinoma cases and in the normal ovarian
tissues, we did not observe either N-acetyl-aspartate or N-
acetyl-lysine. Only this small fraction of the NMR spectrum
(2.02 to 2.04 ppm) allows to discriminate between these 3
histological types of ovarian cancer. The proximity of these
two resonance and the –CH3 moiety of sialic acid or N-acetyl
groups of glycoproteins (2.06 to 2.1 ppm) may potentially
lead to some confusion in vivo 1H-MR spectroscopy [9, 11,
13, 14] or non-HRMAS5 ex vivo NMR studies of ovarian car-
cinoma cases. N-acetyl-aspartate is exclusively synthesized at
high concentrations in the cytoplasm of neurons [21] and
was detected in a few other tissues, as well as in peritoneal

mast cells [22], retina, and lens [23] of the eye. The role
of N-acetyl-aspartate in the solid part or in cyst fluid [8]
of ovarian serous carcinomas and the other N-acetylated
molecules resonating between 2.04 and 2.07 ppm in other
cancers [9, 24–27] remains obscure.

β-glucose was absent in all cases of serous cancer tissues.
This observation is in accordance with many other cancer
tissues studies [17, 28–30]. The absence of β-glucose is
explained by the high-energy expenditure in cancer cells
and elevated glucose turnover. This result was correlated
with FDG-PET imaging studies, which demonstrated the
sensitivity of FDG fixation in serous type of ovarian carcino-
mas, while endometrioid and mucinous types were sources
of false negative results [3, 31–36]. In agreement with the
literature, we also observed high levels of alanine and lactate
in serous carcinoma indicating an impairment of the aerobic
pathway, as well as elevated levels of glutamate, threonine
(the principal amino acid of mucin), and lysine due to
increased protein synthesis [8, 37]. In contrast to many other
cancers [17, 28, 38, 39] and in agreement with gastric [37]
or prostate cancers [37], the level of taurine was decreased
in serous and mucinous ovarian carcinomas. This taurine
deficiency may be associated with the loss of its protective
role in cells, specifically in membrane stabilization as well as
antioxidation and detoxification activities.

An increase of the total choline-containing compounds
(e.g., glycerophosphocholine, phosphocholine, and choline)
has been reported as the most common feature in a
large variety of tumors demonstrating biosynthetic and/or
catabolic phosphatidylcholine-cycle pathways of cell mem-
brane turnover [40, 41] and was proposed as fingerprints of
tumor progression and/or as endpoints of therapeutic treat-
ment [7, 12–14, 42]. Many authors have indeed concluded
that the total choline-containing compounds could not be
used as an indicator of malignancy but only as an indicator
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of proliferation of tumor cells (including in ovarian tumors)
[4, 8, 14, 15, 43, 44]. In our case, we observed a
significant higher level of total choline-containing com-
pounds in all ovarian carcinomas, the free choline being
more pronounced in endometrial carcinomas and phos-
phocholine/glycerophosphocholine in mucinous and serous
carcinomas (Figure 1).

A secondary aim of this study was to try to understand
the biological potential and outcome of borderline tumors in
order to adapt and avoid overtreatment, which is important,
since these tumors occur in young females and represent
15% of epithelial ovarian cancer [4]. The statistical models
generated in this study were able to predict borderline
tumors, which present an intermediate metabolic pattern
near the normal ovarian tissue, reinforcing the hypothesis
of the existence of transitional metabolism during the
progression of tumors [5]. The same transitional metabolism
was also observed in low Silverberg score serous carcinoma
cases which represent a metabolically heterogeneous group,
intermediate between high Silverberg score serous carcino-
mas and normal ovarian tissue (Figure 2(d)). These results
require confirmation with a larger number of cases.

Finally, to our knowledge, this paper presents the first
retrospective study correlating metabolomics findings with
clinical followup in serous ovarian cancers. PLS-DA analysis
was able to predict survival by separating convincingly
the group of patients with improved or inferior survival
rates at 24 months. The statistical model was also able to
predict tumors responsive or resistant to chemotherapy.
These results may point to the presence of a different cell
metabolism resulting in intrinsic drug resistance, noted
in 30% of untreated tumors [45]. This complementary
information may provide the opportunity to adapt the
chemotherapeutic regimen for this heterogeneous group.
Additional investigations are needed to elucidate the
mechanisms of the intrinsic resistance in an attempt to
identify possible panels of novel biomarkers and/or targets
for therapeutic intervention. Despite the low number of
tissue samples, our work based on metabolomics analysis of
intact tissues using a nondestructive, rapid analysis protocol
(30 min) provides a promising technique which may be
applicable to the therapeutic management of patients [46].
It will clearly be necessary to conduct a multicenter medical
study on a larger scale in order to confirm these preliminary
very encouraging results.
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