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In spite of having been the object of considerable attention, the
histopathological grading of oligodendrogliomas is still contro-
versial. The determination of reliable biomarkers capable of
improving the malignancy grading remains an essential step in
working toward better therapeutic management of patients.
Therefore the metabolome of 34 human brain biopsies, his-
topathologically classified as low-grade (LGO, N � 10) and
high-grade (HGO, N � 24) oligodendrogliomas, was studied
using high-resolution magic angle spinning nuclear magnetic
resonance spectroscopy (HRMAS NMR) and multivariate sta-
tistical analysis. The classification model obtained afforded a
clear distinction between LGOs and HGOs and provided some
useful insights into the different metabolic pathways that un-
derlie malignancy grading. The analysis of the most discrimi-
nant metabolites in the model revealed the presence of tumoral
hypoxia in HGOs. The statistical model was then used to study
biopsy samples that were classified as intermediate oligoden-
drogliomas (N � 6) and glioblastomas (GBMs) (N � 30) by
histopathology. The results revealed a gradient of tumoral hyp-
oxia increasing in the following direction: LGOs, intermediate
oligodendrogliomas, HGOs, and GBMs. Moreover upon analysis
of the clinical evolution of the patients, the metabolic classifi-
cation seems to provide a closer correlation with the actual
patient evolution than the histopathological analysis. Magn
Reson Med 59:959–965, 2008. © 2008 Wiley-Liss, Inc.
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Oligodendrogliomas represent 5% to 18% of adult gliomas
and their clinical management is known to differ from
other gliomas, especially regarding their sensitivity to ra-
dio- and chemotherapy (1). Most oligodendrogliomas grow
slowly but inevitably evolve into a malignant form. The
histopathological diagnosis of oligodendrogliomas and the

correct grading of their malignancy are crucial steps to
establish an accurate prognosis and to define the optimum
surgical and therapeutic strategies, since they may trigger
or delay radio- and chemotherapy. However, at the present
time, the search for specific biomarkers to identify oligo-
dendrogliomas has not yet been successful (2,3). Despite
improvements in the malignancy grading systems, no con-
sensus has yet been found as to which morphological
features constitute unambiguous criteria of malignancy
(1,4–7). Using existing classifications methods, it is com-
mon to observe, on one hand, tumors classified as low-
grade oligodendrogliomas (LGOs) with poor evolution
and, on the other hand, tumor classified as high-grade
oligodendrogliomas (HGOs) with relatively long survival
time. These disagreements between the malignancy grad-
ing and the prognosis should be overcome. Therefore the
determination of reliable biomarkers, such as 1p/19q loss,
related to patient prognosis is essential for better therapeu-
tic management of patients (8–10).

Metabolomic analysis aims at quantifying and identify-
ing all metabolites in an organ or a tissue, at the cellular or
even at the subcellular level (11–13). For most purposes, it
is not necessary to quantify the absolute amounts of me-
tabolites but only their relative ratios in pathologic and
healthy situation. Metabolomic analyses result in the de-
tection of almost 50 different metabolites in brain biopsies
(14–19). In order to gain meaningful biological informa-
tion from metabolic profiles, it is necessary to evaluate the
data both statistically and bioinformatically to gain infor-
mation on the underlying metabolic pathways via known
or calculated biochemical networks (20,21).

PATIENTS AND METHODS

Patients

In this prospective study, 34 patients, histopathologically
classified as LGOs (10 patients, seven men and three wom-
en; mean age � 48.5 � 19.6 years) and HGOs (24 patients,
17 men and seven women; mean age � 44.6 � 12.0 years),
respectively, with grade II and III in the World Health
Organization (WHO) classification, were studied. To eval-
uate the predictive properties of this statistical model, six
intermediate cases of oligodendrogliomas (WHO grade II/
III; five men and one woman; mean age � 37.7 � 14.2
years) and 30 histopathologically classified glioblastomas
(GBMs, WHO grade IV; 12 men and 18 women; mean age �
51.3 � 19.6 years) were also included. The clinical fol-
low-up of all the 70 patients was monitored using 1H-MRSI
(at 3-month intervals) and MRI (at 6-month intervals).
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Sample Collection and Preparation

Resected tissue specimens were collected immediately af-
ter patient operation and were snap-frozen in liquid nitro-
gen before being stored at –80°C. For the high-resolution
magic angle spinning (HRMAS) analysis, the amount of
tumoral tissue used ranged from 12 to 40 mg. Each sample
was introduced into a 4-mm ZrO2 rotor fitted with a 50-�l
cylindrical insert. A total of 10 �l of D2O were then added
to the rotor to provide a lock frequency for the nuclear
magnetic resonance (NMR) spectrometer. The exact weight
of sample was determined by weighing the empty rotor
and the rotor containing the biopsy. The rotor was stored
back at –80°C until the time of HRMAS analysis. Before
inserting the rotor into the NMR probe, the probe was
precooled to 3°C. The whole HRMAS study was performed
at 3°C and started immediately after the temperature in-
side the probe reached the equilibrium condition (5 min).

HRMAS NMR

HRMAS spectra were recorded on a Bruker Avance 500
spectrometer operating at a proton frequency of
500.13 MHz. The instrument was equipped with a 4-mm
triple resonance (1H, 13C, 15N) gradient HRMAS probe. A
Bruker Cooling Unit (BCU) was used to keep the sample
temperature at 3°C. For all NMR experiments, samples
were spun at 3 kHz in order to keep the rotation sidebands
out of the spectral region of interest. One-dimensional (1D)
1H spectra using water presaturation were acquired in
32 min and 128 scans. For each sample, spectra were also
acquired using a Carr-Purcell-Meiboom-Gill (CPMG) pulse
sequence in order to attenuate the broader signals arising
from the macromolecular tissue components such as the
lipoproteins, thereby giving a clearer representation of the
lower molecular weight components. 1D 1H CPMG spectra
were acquired using the following pulse sequence (relax-
ation delay 90°–(�–180°–�)n– acquire FID) with N � 40 and
using 128 transients. To decrease the effects of radio fre-
quency field inhomogeneities (22,23) the CPMG pulses
were synchronized with the sample spinning (� � 333.33
�s). To assign all the resonances, 2D homonuclear 1H-1H
and heteronuclear 1H-13C experiments were recorded on
three samples. 2D 1H-1H J-correlation spectra using a de-
coupling in the presence of scalar interactions (DIPSI)-2
mixing sequence were acquired with a 170-ms acquisition
time, a 50-ms mixing time, a 6000-Hz spectral width, and
a 1.5-s relaxation delay. A total of 16 transients were
averaged for each of the 256 increments during t1, corre-
sponding to a total acquisition time of 2 h. 2D 1H-13C
gradient heteronuclear single quantum correlation (g-
HSQC) (24) experiments were acquired using a 170-ms
acquisition time with globally optimized alternating phase
rectangular pulse (GARP) 13C decoupling and a 1-s relax-
ation delay. A total of 256 transients were averaged for
each of 256 t1 increments, corresponding to a total acqui-
sition time of 21 h. To detect a possible degradation of the
sample during the course of the NMR experiments, a con-
trol experiment consisting of a 1D 1H HRMAS spectrum
was recorded before and after each set of experiments and
no metabolite degradation was detected. As a further proof
of sample stability under the experimental conditions

used, 1D 1H spectra were recorded at 3°C on three different
samples every hour during a 24-h period and no evolution
of the spectra was observed.

Statistical Analysis

1D HRMAS NMR spectra were data reduced into 200 in-
tegral regions of 0.02 ppm width between 4.5 and 0.5 ppm
using the software program AMIX (Analysis of MIXtures
version 2.5; Bruker Rheinstetten, Germany) and exported
into SIMCA P (version 11.0; Umetrics AB, Umeå, Sweden)
where partial least square discriminant analysis (PLS-DA)
was conducted. All analyses used Pareto scaling (scaling
factor 1/�SD) to accommodate the influence of metabo-
lites present in both high and low concentrations in the
model, but without emphasizing spectral noise. PLS-DA is
a supervised analysis procedure (i.e., a method incorpo-
rating prior knowledge of class identity) that tries to max-
imize the separation between classes, rather than explain-
ing the maximum variation in the data, or to construct
statistical boundaries around each class.

PLS-DA was performed on the data to obtain a metabolic
description of each oligodendroglioma type. To test the
resulting supervised models, the class membership of ev-
ery sample was iteratively predicted and the results were
used to generate a measure of the goodness of the fit (Q2)
for the overall model. The theoretical maximum is 1 for a
perfect prediction. In order for a PLS component to be
considered significant, Q2 must be significantly larger than
zero and is generally considered as good when equal or
superior to 0.5. This technique provides predictive capa-
bility and was used to model spectral changes in terms of
metabolites variations. While Q2 is related to the predic-
tive power of the model for each data set, the predictive
capability of the model was also calculated directly and
represented as a percentage of success rate if the score/
disease status was specified within a given limit (25,26).

The resulting statistical model can then be used to clas-
sify unknown samples and attribute them to a specific
class of the model. Interpretation of the regression coeffi-
cients provides information on the most discriminant me-
tabolites used in the model and gives some insight into the
metabolic pathways involved.

RESULTS AND DISCUSSION

In this work, we have used a metabolomic approach in
order to gain some insights into the mechanisms of in-
creasing malignancy at the molecular level. Metabolomics
is an elegant way to bridge the gap between clinical prog-
nosis and the grading system. A total of 34 patients, his-
topathologically classified as follows: 10 LGOs (seven men
and three women; mean age � 48.5 � 19.6) and 24 HGOs
(17 men and seven women; mean age � 44.6 � 12.0), grade
II and III in the WHO classification, respectively, were
studied. Each sample was studied using HRMAS NMR
spectroscopy, a technique that has recently demonstrated
its potential for analyzing intact biological tissues (Fig. 1).
To interpret this global metabolic information, the data
were subjected to a multivariate statistical analysis using a
supervised analysis procedure that makes use of the pri-
mary histological classification (LGO vs. HGO). The re-
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FIG. 1. 1D 1H and 2D total correlation spectroscopy (TOCSY) HRMAS spectra of a brain tumor sample from a patient diagnosed as HGO.
Partial metabolite assignments in the 4.5 to 0.5 ppm region are shown. The underlined part of the 1D spectrum corresponds to the spectral
region used in the amino acid metabolism analysis. [Color figure can be viewed in the online issue, which is available at http://
www.interscience.wiley.com.]



FIG. 2. Global spectral analysis. a: 3D plot showing the first three component of the PLS-DA computed on histopathologically classified LGOs
(blue points) and HGOs (red points). The 95% confidence criteria volume (1.96 � SD) for each group is represented. This model allows a clear
separation, with only a small overlap of the LGO and HGO spatial distribution. b: PLS-DA is validated by a cumulative R2Y (black bar) equal to
0.81. The cumulative Q2 (white bar) value obtained for three components, which is equal to 0.5, indicates a good predictivity for the model. c:
Correlation coefficient between the original Y (histopathological classification hypothesis) and the permuted Y vs. the cumulative Q2 represented
by a regression line whose value is negative at the origin. This feature demonstrates that there is no overfit of the model.

FIG. 3. Global variable weights in oligodendroglioma classification: Plot of PLS-DA weights showing the first and third components for
LGOs (blue) vs. HGOs (red) classification. Each point (numerical value in ppm) represents a single bucket (i.e., 0.2-ppm interval in the
HRMAS NMR spectra), which is correlated to one or several metabolites. Most valuable buckets underlying this classification are displayed
in the figure: alanine, lipids, valine, the total choline compounds, proline, myoinositol, taurine, glutamine (Gln), glutamate (Glu), GABA, NAA,
acetate, and creatine. Differences between LGOs and HGOs are given in terms of bucket weights in PLS components computation.
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sponse variable set (Y-data) was created by indicating the
classes of observations (LGO vs. HGO) in the training set
and a PLS-DA model was fitted to the training set (200
variables per observation) X-matrices. PLS analysis is
probably the least restrictive of the various multivariate
extensions of the multiple linear regression models. Its
flexibility allows it to be used for situations in which the
use of traditional multivariate methods is severely limited,
such as the case when there are fewer observations than
predictor variables (21). This technique is a powerful tool
that defines automatically the combination of metabolic
variables that best describe the clustering in malignancy
grading.

The results obtained using PLS-DA show a clear separa-
tion between LGOs and HGOs on the basis of the whole set
of metabolic variables. The model generated with three
significant PLS-components (determined by cross valida-
tion) had a cumulative fit to the Y-data (R2Y) of 0.82 and a
cumulative confidence criterion of prediction of 0.50 (Q2)
(Fig. 2). As the number of observations is limited, cross-
validation was performed by first excluding a portion of
the available data from the model training and then by
predicting their classification using the model. This pro-
cess was repeated until all the data were left out once. In
our case, each patient was kept out of the model develop-
ment and then classified using the model. This procedure
was repeated for the whole series of patients and no mis-
classification of the LGO or HGO population was detected.

Although the direct identification of the metabolites is
not necessary to achieve the classification, analyzing the
different metabolites at the origin of the classification can
lead to the detection of pathological biomarkers and to a
better understanding of the tumoral metabolism. The most
discriminant metabolites contributing to the model were
found to be: alanine, lipids, valine, total choline com-

pounds, proline, myoinositol, taurine, glutamine, gluta-
mate, �-aminobutyric acid (GABA), malate, N-acetyl-as-
partate (NAA), acetate, and creatine (Fig. 3). In agreement
with several publications discussing the fixation of fluoro-
deoxy-D-glucose in gliomas (27), our results show that
glucose is not a discriminating biomarker between LGOs
and HGOs. The lactate concentration or the total amount of
amino acids detected by HRMAS is also not statistically
different between LGOs and HGOs. What is however clear
is that HGOs show an increase of amino acid production
via nonoxidative pathways, indicating that the energy me-
tabolism shifts toward fermentative metabolism when the
oligodendrogliomas evolve from a LGO to a HGO (28–30).

We then computed a new model focussed on the amino
acid metabolism. This model included the most valuable
metabolites described by the global model but excluded
choline compounds (membrane turnover), myoinositol
(glial metabolism), and creatine. To reduce the contribu-
tion of lipid signals that may obscure metabolite reso-
nances, the model was built using the spectra resulting
from a CPMG HRMAS experiment. The CPMG sequence is
known for its ability to attenuate the contribution from
molecules with a short T2 relaxation time (i.e., the lipids).
Using only the metabolites related to the amino acid me-
tabolism (Fig. 1) with the goal of probing oxidative vs.
nonoxidative amino acids production pathways, the met-
abolic clustering of LGO and HGO was maintained (Fig. 4):
the model generated with four significant PLS-components
had a cumulative fit to the Y-data (R2Y) of 0.82 and a
cumulative confidence criteria of prediction of 0.46 (Q2),
with only one HGO misclassified. As in the previous case,
the classification was validated by circular validation.

As the model generated from the partial metabolic data-
set had a cumulative fit to the Y-data and a cumulative
confidence criteria of prediction similar to the one gener-

FIG. 4. Amino acid metabolism analysis. a: 3D plot showing the first three component of the PLS-DA computed using histopathologically-
classified LGOs (blue points) and HGOs (red points) using only the NMR spectral region corresponding to the amino acid metabolism. The
95% confidence criteria volume (1.96 � SD) for each group is represented. An efficient separation is also well achieved with this model,
with only a small overlap of the LGO and the HGO spatial distribution. b: PLS-DA is validated by a cumulative R2Y (black bar) equal to 0.81.
The cumulative Q2 (white bar) value is close to 0.5 and indicates a good predictability for the model. c: Correlation coefficient between the
original Y (histopathological classification hypothesis) and the permuted Y vs. the cumulative Q2 represented by a regression line whose
value is negative at the origin. This feature demonstrates that there is no overfit of the model.
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ated using the full metabolite set, it became clear that the
distinction between LGOs and HGOs is principally due to
the metabolites involved in amino acid metabolism. We
observed that in HGO the alanine and the valine produc-
tion, which are related to the anaerobic pathway, are in-
creased whereas proline, glutamate, glutamine, GABA,
and NAA, which are related to the Krebs pathway, are
decreased. This metabolic shift toward fermentative me-
tabolism clearly reflects tumor hypoxia in HGOs. Includ-
ing information pertaining to the lipids, the choline com-
pounds and myoinositol only slightly improved the clas-
sification.

To evaluate the predictive properties of this statistical
model, six intermediate cases of oligodendrogliomas
(WHO grade II/III; five men and one woman; mean age �
37.7 � 14.2 years) and 30 histopathologically classified
GBMs (WHO grade IV; 12 men and 18 women; mean age �

51.3 � 19.6 years) were studied by metabolomics. The
results revealed that the classification reflects a gradient of
hypoxia increasing in the following direction: LGOs,
HGOs, and GBMs . The intermediate grade II/III oligoden-
drogliomas cases occur, either in the LGO region or in the
border region between LGO and HGO (Fig. 5). A closer
inspection of the data reveals that the metabolic model is
not perfectly correlated with the histopathological grad-
ing. The classification obtained using the metabolic anal-
ysis probably reflects complex metabolic processes that
correlate better with the patient’s clinical course. Almost
all GBMs have poor prognosis (survival time � 11 � 9
months) and our metabolomic model reflects this fact by
regrouping them on one extremity of the metabolic distri-
bution. However, some GBM cases that are detected as
metabolically close to HGOs or LGOs display a relative
long survival time (22 � 9 months). In the same way,

FIG. 5. Application of the statistical model to new histopathologically classified cases. a: 3D plot showing the first three components of the
PLS-DA model computed with LGOs (blue dots) and HGOs (red dots) using only the NMR spectral region corresponding to the amino acid
metabolism. Introduction of intermediate oligodendrogliomas (green triangles) and GBM cases (black squares) in the model shows a
metabolic shift reflecting roughly the histopathological malignancy grading: LGOs (WHO grade II), intermediate cases of oligodendroglio-
mas (WHO grade II/III), HGOs (WHO grade III), and GBMs (WHO grade IV). The arrow indicates the apparent direction from the barycenter
of the LGO distribution to the barycenter of the GBM distribution and corresponds to an increase in malignancy. b,c: Focusing on the
overlapping region of the four groups (dashed box on Fig. 5a), we observe that the metabolomic classification seems to be better correlated
to the clinical evolution than the histopathological grading. The numbers indicate the time elapsed (in months) since the initial diagnosis.
Patient death is represented by (�) and tumor recurrence by (�).
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intermediate oligodendroglioma cases present heteroge-
neous metabolic pattern correlated with clinical evolution:
three cases that are metabolically close to HGOs and GBMs
present bad prognosis with a very short recurrence period
(7 months in two cases, and death after 11 months for the
third one) and the three other cases close to LGOs present
better prognosis (no tumor progression during clinical
screening elapsed time, from 12 to 36 months).

CONCLUSIONS

The significance of the histopathological diagnosis is
based largely on its ability to predict prognosis and its
ability to predict the patient’s response to different treat-
ment modalities. However, in the case of gliomas, morpho-
logic criteria are probably insufficient. The present find-
ings suggest that the metabolic information (the degree of
tumor hypoxia) obtained at an early state of disease could
be better correlated with the patient prognosis than the
morphological criteria (28–30). This property should al-
low us to better understand variable clinical evolution and
atypical cases. Moreover, the diagnosis of hypoxia is of
direct clinical relevance to the successful treatment of
cancer, in particular hypoxia in tumors can affect the
outcome of chemotherapy and radiotherapy treatments.

In spite of the relatively short screening period of the
patients (3 years), our observations suggest that a metabo-
lomic study, associated with histopathology and molecu-
lar biology data, could become a reliable indicator of pa-
tient prognosis. Metabolomic data acquired on a larger
population could therefore become an essential element
for a better therapeutic management of the patient.
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